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Abstract: Modern-day attackers tend to use sophisticated multi-stage/multi-host attack 

techniques and anti-forensic tools to cover their attack traces. Due to the current limitations of 

intrusion detection systems (IDS) and forensic analysis tools, evidence can be false positives or 

missing. Additionally, because of the large number of security events, finding an attack pattern 

may become like finding a needle in a haystack. Consequently, reconstructing attack scenarios 

that can hold the attackers accountable for their activities becomes a challenge. 

This paper describes a probabilistic model that applies Bayesian Network to constructed 

evidence graphs, systematically addressing how to solve some of the above problem by detecting 

false positives, analyzing the reasons of missing evidence and computing the posterior 

probabilities and false positive rates of an attack scenario constructed by discovered evidence. 

We have also developed an accompanying software tool for network forensic analysis.  Our 

system is based on Prolog and use known vulnerability databases and an anti-forensics database 

that is similar to the NIST National Vulnerability Database (NVD).  Our experimental results 

show that such a system is useful for constructing the most likely attack scenario and managing 

errors for network forensic analysis.  
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1. INTRODUCTION 

Digital forensics investigators use evidence and contextual facts to formulate attack 

hypotheses, and assess the probability that the facts support or refute hypotheses on network 

attacks [7]. However, due to the limitations of forensics tools and experts’ knowledge, 

formalizing a hypothesis and using quantitative measures to support the hypothesis on a multi-

step, multi-host attack launched toward an enterprise network becomes a challenge. As a 

solution, we designed a method and developed a software tool to partially automate the process 

of constructing quantitatively supportable attack scenarios by using the available evidence. We 

show its applicability using a case study of an attack.  

Our method uses a Bayesian Network (BN) to estimate the likelihood and false positive 

rates of potential attack scenarios that fit discovered evidence. Although BNs have been used for 

digital evidence modeling [5,6,7,12], to the best of our knowledge these publications construct 

BNs in an ad hoc manner. In this paper, we show how our method automates the process of 

organizing evidence in a graphical structure (that we call a logical evidence graph) and apply 

Bayesian analysis to the entire graph. By doing so, our system can: (1) provide us attack 

scenarios with acceptable false positive rates, and (2) dynamically update the joint posterior 

probability and false positive rate of an attack path when new item of evidence for the attack 

path is presented.  

The rest of this paper is organized as follows. Section 2 provides background and related 

work. Section 3 describes logical evidence graphs. Section 4 describes our probabilistic analysis. 

Section 5 describes a case study. Section 6 concludes the paper. 

2. BACKGROUND AND RELATED WORK 
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BNs have been used to facilitate the expression of opinions regarding legal 

determinations on the credibility and relative weight of non-digital evidence [5, 6, 7, 8, 12]. 

Many researchers of  criminal forensics use BNs to model dependencies between hypotheses and 

evidence taken from crime scenes and use these models to update the belief probability of newly 

found evidence given the previous ones [5, 6, 8, 10,11, 12]. In digital forensics, researchers also 

have used BNs to reason about evidence in order to quantify the strengths in supporting the 

reliability and traceability of corresponding hypotheses [7]. However, these BNs were custom-

built without using a uniform model. Given the evidence, tools that directly support 

automatically building a BN and estimating belief probabilities as well as corresponding 

potential error rate have been minimal.  

Our system presented in this paper is based on a Prolog-based reasoning system MulVAL 

[13,14] using known vulnerability databases and an anti-forensics database that we plan to 

extend to a standardized database like the NIST National Vulnerability Database (NVD). 

3. LOGICAL EVIDENCE GRAPHS 

This section defines logical evidence graphs and shows how we design rules to correlate 

available evidence to attack scenarios. Because we use reasoning to link observed attack events 

and collected evidence, we call such an evidence graph a logical evidence graph.  

Definition 1 (Logical Evidence Graph- LEG): A LEG=(Nr,Nf,Nc,E,L,G) is said to be a 

logical evidence graph (LEG), where Nf, Nr and Nc are three sets of disjoint nodes in the graph 

(they are called  fact, rule, and consequence fact nodes respectively), E ⊆ ((Nf∪Nc)×Nr)∪( Nr 

×Nc) ), and L is the mapping from a node to its labels. G⊆ Nc are the observed attack events. 

Every rule node has a consequence fact node as its single child and one or more fact or 

consequence fact nodes from prior attack steps as its parents. Node labels consist of 
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instantiations of rules or sets of predicates specified as follows: 

1. A node in Nf is an instantiation of predicates that codify system state including access 

privileges, network topology consisting interconnectivity information, or known vulnerabilities 

associated with host computers in the system. We use the following predicates: 

a.  “hasAccount(_principal, _host, _account)”, “canAccessFile(_host, _user, _access, 

_path)” and etc. to model access privileges.  

b. “attackerLocated(_host)” and “hacl(_src, _dst, _prot, _port)” to model network topology, 

namely, the attacker’s location and network reachability information.  

c. “vulExists(_host, _vulID, _program)” and “vulProperty(_vulID, _range, _consequence)” 

to model vulnerabilities exhibited by nodes.  

2. A node in Nc represents the predicate that codifies the post attack state as the consequence of 

an attack step. We use predicates “execCode(_host,_user)” and “netAccess(_machine,_protocol, 

_port)” to model the attacker’s capability after an attack step. Valid instantiations of these 

predicates after an attack will update valid instantiation of the predicates listed in (1).  

3.  A node in Nr consists of a single rule in the form pp1p2,.,pn, where p as the child node of  

Nr  is an instantiation of predicates from Nc , and all pi for i{1,…n} as the parent nodes of Nr  are 

the collection of all predicate instantiations of Nf from the current step and Nc  from prior attack 

steps.  

Figure 1 is an example LEG (the notation of all nodes is in the Table 1), where fact, rule 

and consequence fact nodes are represented as boxes, ellipses, and diamonds respectively. 

Consequence fact nodes (Node 1 and 3) codify attack status obtainable from event logs or other 

forensic tools recording the post-conditions of attack steps. Facts (Node 5, 6, 7 and 8) include 

software vulnerability (Node 8) extracted from forensic tools by analyzing captured evidence, 
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computer configuration (Node 7) and network topology of a network (Node 5, 6). Rule nodes 

(node 4 and 2) represent specific rules that change the attack status using attack steps. These 

rules are created from expert knowledge, which are used to link chains of evidence as 

consequences of attack steps. Linking the chain of evidence by using a rule forms an 

investigator’s hypothesis of an attack step given the evidence.  

 

Figure 1: An Example Logical Evidence Graph 

Table 1: The notation of nodes in Figure 1 

Node Notation Resource 

1 execCode(workStation1,user) 
Evidence obtained from event 

log 

2 THROUGH 3 (remote exploit of a server program) Rule 1 (hypothesis 1) 

3 netAccess(workStation1,tcp,4040) 
Evidence obtained from event 

log 

4 THROUGH 8 (direct network access) Rule 2 (hypothesis 2) 

5 hacl(internet,workStation1,tcp,4040) Network setup 

6 attackerLocated(internet) Evidence obtained from log 

7 networkServiceInfo(workStation1,httpd,tcp,4040,user) Computer setup 

8 
vulExists(workStation1,'CVE-2009-1918', 

httpd,remoteExploit,privEscalation) 

Exploited vulnerability obtained 

from IDS Alert 

 

Figure 2 lists the two rules (Rule 1 and Rule 2 in Table 1) between Line 9 and Line 17. 

Rules use the Prolog notation “: -“ to separate the head (consequence) and the body (facts). In 
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Figure 2, lines 1 to 8 identify fact and consequence predicates of the two rules. Rule 1 between 

lines 9 to 12 in Figure 2 represents an attack step that states: if (1) the attacker is located in a 

“Zone” such as “internet” (Line 10- attackerLocated(Zone)), and (2) a host computer “H” can be 

accessed from the “Zone” by using “Protocol” at “Port”(Line 11-hacl(Zone, H, Protocol, Port)), 

then (3) the host “H” can be accessed  from the “Zone” by using “Protocol” at “Port” (Line 9- 

netAccess(H, Protocol, Port)) via (4) “direct network access” (Line 12--the description of the 

rule).   Rule 2 between lines 13 to 17 states: if (1) a host has software vulnerability that can be 

remotely exploited (Line 14- vulExists(H, _, Software, remoteExploit, privEscalation) ), and (2) 

the host can be reached by using “Protocol” at “Port” with the privilege “Perm” ( Line 15- 

networkServiceInfo(H, Software, Protocol, Port, Perm) ), and (3) the attacker can access host by 

“Protocol” at “Port” (Line 16-netAccess(H, Protocol, Port) ), then (4) the attacker can remotely 

exploit the host “H” and obtain  the privilege “Perm”(Line 13- execCode(H, Perm) ) via (5) 

“'remote exploit of a server program” technique (Line 17—the description of the rule). 

//Rule Head--post attack status as derived fact obtained from forensic analysis on evidence 

1. Consequence:  execCode(_host, _user). 

2. Consequence: netAccess(_machine,_protocol,_port). 

 

// Rule body--access priviledge 

3. Fact:  hacl(_src, _dst, _prot, _port). 

 

 //Rule body--software vulnerability obtained from forensic tool 

4. Fact: vulExists(_host, _vulID, _program). 

5. Fact: vulProperty(_vulID, _range, _consequence). 

 

//Rule body--network topology 

6. Fact: hacl(_src, _dst, _prot, _port). 

7. Fact: attackerLocated(_host). 

 

//Rule body--computer configuration 

8. Fact: hasAccount(_principal, _host, _account). 

 

 Rule 1: 

9.  (netAccess(H, Protocol, Port) :- 
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10.         attackerLocated(Zone), 

11.         hacl(Zone, H, Protocol, Port)), 

12.         rule_desc('direct network access', 1.0). 

 

Rule 2: 

13.  (execCode(H, Perm) :- 

14.         vulExists(H, _, Software, remoteExploit, privEscalation), 

15.         networkServiceInfo(H, Software, Protocol, Port, Perm), 

16.        netAccess(H, Protocol, Port)), 

17.     rule_desc('remote exploit of a server program', 1.0). 

 

Figure 2:  The Example Rules Representing Attack Techniques 

4. COMPUTING PROBABILITIES USING BAYESIAN INFERENCE  

Bayesian networks [3] use a directed acyclic graph (DAG) where nodes represent random 

variables (RVs) (events or evidence in our case) and arcs model direct dependencies between 

RVs. Every node has a table (CPT) that provides the conditional probability of the node’s 

variable given the combination of its parent variables’ states. 

Definition 2 (Bayesian Network): Suppose random variables X1,X2,...,Xn are n random 

variables connected in a DAG, the joint probability distribution of X1,X2,...,Xn can be computed 

by using the Bayesian formula  P(X1,X2,…,Xn) = ∏ 〖𝑃(𝑋𝑗)|𝑃𝑎𝑟𝑒𝑛𝑡(𝑋𝑗)〗𝑛
𝑗=1

, in which 

parent(Xj)= {Xi | arc (ij) is in the graph}.     

 

Figure 3: Causal View of Evidence    

 A BN can model and visualize dependencies between the hypothesis and evidence 

to calculate the revised probability when any evidence is presented [11]. Dependency probability 

of a hypothesis H about created scenarios on discovered evidence E can be modeled as shown in 
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Figure 3. Hence, Bayes’ theorem can be used to update an investigator’s belief about a 

hypothesis H when the evidence E is observed, using Equation (1):   

P(H|E)=
𝑃(𝐻)𝑃(𝐸|𝐻)

𝑃(𝐸)
 =

𝑃(𝐻)𝑃(𝐸|𝐻)

P(E|H)∗P(H) + P(E|not H)∗P(not H)
            (1) 

In Equation (1), P(H|E) is the posterior probability of an investigator’s belief on 

hypothesis H given the evidence E. P(E|H) needs to come from experts’ knowledge, referred to 

as the likelihood function that assesses the probability of evidence assuming the truth of H. P(H) 

is the prior probability of H when the evidence has not been discovered and P(E) = P(E|H)*P(H) 

+ P(E|  H)*P( H) is the probability of the evidence irrespective of the experts’ knowledge 

about H,  referred to as a normalizing constant [1,7].  

4.1 Calculating P(H|E) in a Logical Evidence Graph 

An LEG consists of a serial application of attack steps, which can be mapped to a BN as 

follows: (1) “Nc” as the child of the corresponding “Nr” shows that an attack step happened; (2) 

“Nr” is the hypothesis of the attack step, denoted by “H”; (3) “Nf” from the current attack step 

and “Nc′ ” from last attack step as the parents of “Nr” are attack evidence, showing the exploited 

vulnerability and the attack privilege the attacker used to launch the attack step; (4) “Nc” 

propagates the dependency between the current  attack step and the subsequent one( “Nc” is also 

the pre-condition of the subsequent attack step). 

4.1.1. Computing P(H|E) for a Consequence Fact Node 

Equation (1) can be used to compute P(H|E) for a consequence fact node of a single 

attack step when the prior attack step has not been considered  where the rule node provides the 

hypothesis H, both the fact node “Nf” and the consequence node from a prior attack step “Nc′” 

provide evidence E. Because a hypothesis H is a rule node “Nr”, Bayes’ theorem implies 

Equation (2): 

Comment [CL1]: Chang not to  in LaTex 
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P(H|E)=P(Nr|E)= 
𝑃(Nr)𝑃(E|Nr)

𝑃(E)
               (2) 

The fact nodes from current attack step and the consequence fact node from a prior attack 

step are independent to each other. They provide the body of the rule, deriving the consequence 

fact node for the current attack step as the head of the rule. Consequently, their logical 

conjunction provides the conditions that are used to arrive at the conclusion of rule. Accordingly, 

if a rule node has “k” many parents Np1, Np2, …, Npk that are independent, P(E)= 

P(Np1,Np2,…,Npk) = P(Np1∩Np2∩…∩Npk)=P(Np1).P(Np2)….P(Npk)( ∩ means “and”). Due to the 

independence, given the rule Nr ， P(E|Nr)= P(Np1, Np2,.., 

Npk|Nr)=P(Np1|Nr).P(Np2|Nr)…P(Npk|Nr). Hence, by applying Equation (2) where H is Nr and E is 

Np1∩Np2∩…∩Npk, we get Equation (3) to compute P(H|E) for a consequence fact node.  

P(H|E) =P(Nr| Np1,Np2 ,…,Npk) =
𝑃(Nr)P(Np1 |Nr).P(Np2 |Nr)… P(Npk |Nr)

𝑃(Np1)𝑃(Np2)…𝑃(Npk)
      (3) 

 However, because P(E|Nr) is forensic investigators’ subjective judgment, it would be 

difficult for human experts to assign P(Np1 |Nr), P(Np2 |Nr) … P(Npk |Nr) separately. We allow the 

investigators’ discretion of using Equations (2) to consider P(E|Nr) directly. 

4.1.2. Computing P(H|E) for the Entire Logical Evidence Graph 

Now we show how to compute P(H|E) for the entire LEG composing of attack paths. Any 

chosen attack path in a LEG consists of a serial application of attack steps. Suppose Si（i＝1 to 

n) represents the i
th 

attack step in an attack path. Because an attack step only depends on its direct 

parent attack step, but is independent from all other ancestor attack steps in the attack path, by 

applying Definition (2), we get Equation (4) as follows. 

P(H|E) = P(H1,H2…Hn|E1,E2,E3…En) = P(S1)P(S2|S1)….P(Sn|Sn-1)               (4)      
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Let Ni,f, Ni,r and Ni,c be the fact, rule and consequent fact node at the i-th attack step. 

Equation (4) is written to Equation (5) as follows.  

P(H|E) = P(S1)P(S2|S1)…. P(Si|Si-1)… P(Sn|Sn-1)    

=  P(N1,r|N1,f) P(N2,r| N1,c, N2,p) … P(Ni,r| Ni-1,c, Ni,p) … P(Nn,r| Nn-1,c, Nn,p)  

            =
𝑃(N1,r)𝑃(N1,f|N1,r)

𝑃(N1,f)
…

𝑃(Ni,r)𝑃(Ni−1,c,Ni,f|Ni,r)

𝑃(Ni−1,c,Ni,f)
…

𝑃(Nn,r)𝑃(Nn−1,c,Nn,f|Nn,r)

𝑃(Nn−1,c,Nn,f)
    (5) 

where “P(S1).P(S2|S1)…. P(Si|Si-1)” is the joint posterior probability of the prior i attack steps 

(including attack step 1, 2,… i )  given all evidence from these attack steps (evidence for attack 

step 1 is N1,f ; evidence for attack step i includes Ni-1,c and Ni,f  where i goes from 2 to n.). 

“P(S1).P(S2|S1)…. P(Si|Si-1)” is propagated to i+1-th attack step by the sequence fact node Ni,c 

that is also the pre-condition of the i+1-th attack step. Algorithm 1 presents this description in the 

algorithmic format. 

ALGORITHM 1: 
Input: A logical evidence graph LEG=(Nr,Nf,Nc,E,L,G) that may have multiple attack 

paths, and P(Ni,r)(i=1 to n), P(N1,f|N1,r|), P(N1,f), P(Ni-1,c,Ni,f |Ni,r) ,P(Ni-1,c,Ni,f) (i=2 to n)  from 

expert knowledge for each attack path([N1,f] and [Ni-1,c,Ni,f ](i>=2) are evidence E. P(Ni,r)(i>=1) 

is H). 

Output: The joint posterior probability of the hypothesis of every attack path, 

P(H|E)=P(H1,H2…Hn|E1,E2,E3…En) (P(H|E) is written as P in the algorithm) , given all evidence 

represented by fact nodes Ni,f  and Ni,c(i=1 to n).   

Begin 

1. Qg   Ø          // set the Qg to empty 

2. For each node n ∈ LEG do     

3.          color[n]  WHITE       // color every node in the graph to white 

4. End 

5. ENQUEUE(Qg, N1,f)                 // push all fact nodes from first attack steps to queue Qg  

6.  j 0                                            //  use j to record which attack path we are computing 

7. While (Qg ≠  Ø )                       // when queue Qg is not empty 

8.     Do n DEQUEUE(Qg )       //take out a fact node n 

9.                  N1,r  child[n]           //find a rule node as the child node of n 

10.              If color[N1,r] == WHITE   // if this rule node is not traversed (white) 

11.                  Then  j  j+1                    // it must be a new attack path 

12.                            P[j] PATH(N1,r )  // calculate joint posterior probability of the path 

13.                            color[N1,r] BLACK  //mark this rule node as black 

14. End 



 
 

 10 

 

PATH(N1,r)         //calculate the posterior probability of an attack path 

15.          N1,c  child[N1,r]             // the consequence fact node of first attack step 

16.          E  parents [N1,r]             // E is the evidence for the first attack step 

17.          P[N1,c]  
𝑃(N1,r)𝑃(E|N1,r)

𝑃(E)
       // the probability for first attack step 

18.          color[E]  BLACK                   //mark all evidence to black color 

19.          PP[N1,c]                                   // use P to do cursive computation 

20.          For i  2 to n do               // from the second attack step to the last attack step 

21.                Ni,rchild[Ni-1,c]    // the rule node as H of i
th
 attack step 

22.                E  parents[Ni,r]   //the evidence for the i
th
 attack step 

23.                Ni,c  child[Ni,r]    // the consequence fact node of i
th
 attack step 

                     // the posterior possibility for the i
th
 attack step  

24.               P [Ni,c ] P(Ni,r| E)  
𝑃(Ni,r)𝑃(E|Ni,r)

𝑃(E)
    

25.               color[E]  BLACK  //mark all traversed evidence to black color 

             26.               P P. P(Ni,c)  // joint posterior possibility of attack steps of (1 … i) 

             27.          End 

             28.          Return P            //return the posterior attack possibility for this attack path 

 

Algorithm 1:  Computing P(H|E) for the entire Logical Evidence Graph 

Because a LEG may have several attack paths, in order to compute each attack path’s 

posterior probability, we mark all nodes as white (Line 2, 3 and 4), and push all fact nodes from 

the first attack step of all attack paths to an empty queue (Line 1 and 5). When the queue is not 

empty (Line 7), we take a fact node out of the queue (Line 8), and decide if its child that is a rule 

node is white (Line 9 and 10). If the rule node is white, it gives a new attack path (Line 11), upon 

which we recursively use Equation (5) to compute the joint posterior probability for the entire 

attack path (the function is between Line 15 to Line 28) and mark the node BLACK (Line 13) 

once the computation in function “PATH(N1,r)” (Line 12) has been done. We keep repeating the 

above process until the queue holding the fact nodes from the first attack steps of all attack paths 

is empty. 

4.2. Calculating the Cumulative False Positive Rate of a Logical Evidence Graph 

 False positives and false negatives exist in LEGs. A false negative arises in a step 

when an investigator believes that the event was not caused by an attack, but was due to an 
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attack.  A false positive arises when an investigator believes that an event was caused by the 

chosen attack, but was not. Therefore, we wish to estimate both. Because the LEG is constructed 

by using attack evidence chosen by the forensic investigator, which creates the possibility of 

false positive evidence, we compute the cumulative false positive rate of the constructed attack 

paths. We do not estimate false negatives in this paper.  

 The individual false positive estimate on an attack step is formalized as P(E|H), 

where H is the alternative hypothesis, usually written as “not H”, and the value of P(E|H) can 

be obtained from expert knowledge. In order to show how to compute the cumulative false 

positive rate of an entire attack path, we use the notation Ni,f, Ni,r and Ni,c be the fact, rule and 

consequence fact node of the i
th

 attack stack step.  Then, the cumulative false positive rate of an 

entire attack path can be computed as follows (Notice that all evidence supporting an attack step 

is independent from evidence supporting other attack steps). 

P(E|H) = P( E1,E2,…,En|(H1,H2…Hn)) 

              = P(En|Nn,r  )∪P(E1,E2,… ,En-1 |Nn-1,r)    

              =…… 

              = P(En|Nn,r  ) ∪ P(En-1|Nn-1,r  ) ∪…∪ P(E1|N1,r ) 

              = P(E1|N1,r ) ∪ ….∪P(En-1|Nn-1,r  ) ∪ P(En|Nn,r  )      

              =1-(  ……  (1-(1- P(E2|N2,r ) .(1- P(E1|N1,r ) ) ).(1- P(En|Nn,r  ))     (6)  

As described earlier, in Equation (6), E1 is N1,f, and Ei includes Ni-1,c and Ni,f(i= 2 to n).  

The union symbol“∪” is observed to be equivalent to the noisy-OR operator [9]. For a serial 

connection, if any of the attack steps is a false positive, the entire attack path is considered false 

positive. Algorithm 2 presents the computation of P(E|H) for the entire evidence graph in the 

algorithmic form.  

ALGORITHM 2: 

Input: A logical evidence graph LEG=(Nr,Nf,Nc,E,L,G), and  P(N1,f|N1,r) as P(E1|H1), 

P(Ni-1,c,Ni,f|Ni,r) as P(Ei|Hi)(i=2 to n) for every attack path. 
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Output: The cumulative false positive rate of each attack path P(E|H)= 

P(E1,E2,…,En|(H1,H2…Hn))( written as Pf).   

Begin 

1. Qg   Ø          // set the Qg to empty 

2. For each node n ∈ LEG do    

3.          color[n]  WHITE       // color every node in the graph to white 

4. End 

5. ENQUEUE(Qg, N1,f)                 // push all fact nodes from first attack steps to queue Qg  

6.  j  0                                            //  use j to record which attack path we are computing 

7. While (Qg ≠  Ø )                       // when queue Qg is not empty 

8.     Do n DEQUEUE(Qg )       //take out a fact node n 

9.                N1,r  child[n]           //find a rule node as the child node of n 

10.              If color[N1,r] == WHITE   // if this rule node is not traversed (white) 

11.                 Then  j j+1                    // it must be a new attack path 

12.                           Pr[j] PATH(N1,r )  // calculate cumulative false positive rate of the path 

13.                           color[N1,r] BLACK  //mark this rule node as black 

14. End 

 

PATH(N1,r)         //calculate the cumulative false positive rate of an attack path 

15.   N1,c  child[N1,r]             // the consequence fact node of first attack step 

16.   E  parents[N1,r]             // E is the evidence for the first attack step 

17.   P[N1,c] P(E |N1,r)         // the false positive rate of the first attack step 

18.   color[E]  BLACK  //mark all traversed evidence to black color 

19.   Pf  P[N1,c]               //use Pf  to do recursive computation below 

             20.   For i  2 to n do    // from attack step 2 to attack step n 

21.          Ni,rchild[Ni-1,c]    // the rule node of i
th
 attack step 

             22.          Ni,c  child[Ni,r]    // the consequence fact node of i
th
 attack step 

             23.          E  parents[Ni,r]   //the evidence for the i
th
 attack step 

24.          Pf  1-(1- Pf).(1- P(E|Ni,r ))  //the cumulative false positive rate  

25.          color[E]  BLACK  // mark all traversed evidence to black color 

26.   End 

27.   Return Pf       // return the cumulative false positive rate of the attack path 

 

Algorithm 2:  Computing P(E|H) for the Entire Evidence Graph 

In Algorithm 2, Lines 1 to 14 is the same as Algorithm 1, which is used to find a new 

attack path. Lines 15 to 27 use Equation (6) to recursively compute cumulative false positive rate 

for an entire attack path. 

5. CASE STUDY 

 In this section, we show how to reconstruct probabilistic attack scenarios by 

building BN analysis into our tool [4]. 
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5.1 The Experimental Network  

Figure 4 shows an experimental network from [4], which we used as a case study to show 

how to generate a logical evidence graph from post-attack evidence. In this network, the external 

Firewall 1 controls network access from the Internet to the network, where a webserver hosts two 

web services—Portal web service and Product web service. The internal Firewall 2 controls the 

access to a SQL database server that can be accessed from webservers and workstations. The 

administrator has administrative privilege on the Portal webserver that supports a forum for users 

to chat with the administrator. We used SNORT as the IDS and configured both web servers and 

the database server to log all accesses and queries as events. We examine them for attack 

evidence. 

 

Figure 4: An Experimental Attack Network  

By exploiting vulnerabilities in a Windows workstation and a web server that have access 

to the database server, we, who simulated the attacker, were able to successfully launch two 

kinds of attacks on the database server and a Cross Site Scripting (XSS) attack towards the 

administrator’s computer. These attacks include (1) using a compromised workstation to access 

the database server (CVE-2009-1918), (2) exploiting the vulnerability on the web application 
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(CWE89) in the Product webserver to attack the database server, and (3) exploiting XSS 

vulnerability on the chatting forum hosted by the portal web service to steal the administrator’s 

session ID, which allowed the attacker to send out phishing emails to the clients, tricking them to 

update their confidential information.    

Our IDS and the logging system in the network detected some attack activities. We pre-

processed them to data as shown in Table 2. The post attack status obtained by using forensic 

tools is also formalized to Table 3. 

Table 2: Formalized Evidence of the Alerts and Log from Figure 4 

 

Timestamp Source IP Destination IP Content/Observed Events Vulnerability 

08/13-

12:26:10 

129.174.124.122 

Attacker 

129.174.124.184 

Workstation1 
SHELLCODE x86 inc ebx NOOP CVE-2009-1918 

08/13-

12:27:37 

129.174.124.122 

Attacker 

129.174.124.185 

Workstation2 
SHELLCODE x86 inc ebx NOOP CVE-2009-1918 

08/13-

14:37:27 

129.174.124.122 

Attacker 

129.174.124.53 

Product Web Server 
SQL Injection Attempt CWE89 

08/13-

16:19:56 

129.174.124.122 

Attacker 

129.174.124.137 

Administrator 
Cross Site Scripting XSS 

08/13-

14:37:29 

129.174.124.53 

Product Web Server 

129.174.124.35 

Database Server 
name='Alice' AND password='alice' or '1'='1' CWE89 

…     

 

Table 3: Post Attack Status from Attacks in Figure 4 

 

Timestamp Attacked Computer Attack Event Post Attack Status 

08/13-14:37:29 
129.174.124.35 

Database Server 
Information retrieved maliciously Malicious Access 

… …    

 

5.2 Constructing the Logical Evidence Graph   

To use our Prolog-based rules for evidence graph construction, we codified evidence and 

system state to instantiations of predicates that will be used in these rules, as shown in Figure 5. 

In Figure 5, Line 1, 2, 3 model evidence representing post attack status (Table 3), Line 4 to 10 
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model network topology (system setup), Line 11 to 14 model system configurations, and Line 15 

to 21 mode vulnerabilities obtained from captured evidence (Table 2).  

//Observed Attack Events 

1. attackGoal(execCode(workStation1,_)). 

2. attackGoal(execCode(dbServer,user)). 

3. attackGoal(execCode(clients,user)). 

 

//Network Topology 

4. attackerLocated(internet).   

5. hacl(internet, webServer, tcp, 80). 

6. hacl(internet, workStation1,tcp,_). 

7. hacl(webServer, dbServer,tcp,3660). 

8. hacl(internet,admin,_,_). 

9. hacl(admin,clients,_,_). 

10. hacl(workStation1,dbServer,_,_). 

 

//Computer Configuration 

11. hasAccount(employee, workStation1, user). 

12. networkServiceInfo(webServer , httpd, tcp , 80 , user). 

13. networkServiceInfo(dbServer , httpd, tcp , 3660 , user). 

14. networkServiceInfo(workStation1 , httpd, tcp , 4040 , user). 

 

/* Information From Table 1---software vulnearbility */ 

15. vulExists(webServer, 'CWE89', httpd). 

16. vulProperty('CWE89', remoteExploit, privEscalation). 

 

17. vulExists(dbServer, 'CWE89', httpd). 

18. vulProperty('CWE89', remoteExploit, privEscalation). 

 

19. vulExists(workStation1, 'CVE-2009-1918', httpd). 

20. vulProperty('CVE-2009-1918', remoteExploit, privEscalation). 

21.  timeOrder(webServer,dbServer,14.3727,14.3729).  

… 

Figure 5: The Input File for Logical Evidence Graph Generation 

We ran the input file on rules that represent generic attack techniques in our reasoning 

system with two databases, including an anti-forensic database [4] and MITRE’s CVE [2], to 

remove irrelevant evidence and find explanations for missing evidence. They are: (1) according 

to MITRE CVE database, the “Workstation 2”, which is a Linux machine using Firefox as the 

web browser, does not support a successful attack by using “CVE-2009-1918”, because this 

exploit only succeeds on Windows Internet Explorer; (2) a new attack path representing that the 

attacker launched a phishing attack toward the clients by using the administrator’s stolen session 
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ID has been found; (3) an attack path between the compromised “Workstation1” and the 

database server has been found. 

 
 

Figure 6: the Constructed Evidence Graph  

The output of our tool created the LEG as shown in Figure 6. In order to reduce the graph 

size, the notation of nodes in Figure 6 is shown in second column in Table 4. In the same table, 

the third column is the logic operators used to distinguish fact nodes, rule nodes and consequence 

fact nodes, where all fact nodes are marked as “LEAF”, all rule nodes are marked as “OR”, and 

all consequence nodes are marked as “AND”. There are three attack paths in Figure 6, which are: 

(1) the attacker used a XSS attack to steal the administrator’s session ID and therefore obtain the 

administrator’s privilege to send out phishing emails to clients (11→ 9 → 8 → 7 → 6→ 4→ 3→ 
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2→ 1)(left); (2) the attacker used a buffer overflow vulnerability (CVE-2009-1918) to 

compromise a workstation, then obtained access to the database 

(34→33→32→31→30→28→18→17→16) (Middle); and (3) the attacker used a web 

application that does not sanitize users’ input (CWE89) to launch a SQL injection attack toward 

the database (11→24→23→22→21→19→18→17→16) (right).  

Table 4: the Notation of Nodes in Figure 6 

Node Notation Relation 

1 execCode(clients,user) OR 

2 THROUGH 3 (remote exploit of a server program) AND 

3 netAccess(clients,tcp,_) OR 

4 THROUGH 7 (multi-hop access) AND 

5 hacl(admin,clients,tcp,_) LEAF 

6 execCode(admin,apache) OR 

7 THROUGH 3 (remote exploit of a server program) AND 

8 netAccess(admin,tcp,80) OR 

9 THROUGH 8 (direct network access) AND 

10 hacl(internet,admin,tcp,80) LEAF 

11 attackerLocated(internet) LEAF 

12 networkServiceInfo(admin,httpd,tcp,80,apache) LEAF 

13 vulExists(admin,'XSS',httpd,remoteExploit,privEscalation) LEAF 

14 networkServiceInfo(clients,httpd,tcp,_,user) LEAF 

15 vulExists(clients,'Phishing',httpd,remoteExploit,privEscalation) LEAF 

16 execCode(dbServer,user) OR 

17 THROUGH 3 (remote exploit of a server program) AND 

18 netAccess(dbServer,tcp,3660) OR 

19 THROUGH 7 (multi-hop access) AND 

20 hacl(webServer,dbServer,tcp,3660) LEAF 

21 execCode(webServer,user) OR 

22 THROUGH 3 (remote exploit of a server program) AND 

23 netAccess(webServer,tcp,80) OR 

24 THROUGH 8 (direct network access) AND 

25 hacl(internet,webServer,tcp,80) LEAF 

26 networkServiceInfo(webServer,httpd,tcp,80,user) LEAF 

27 vulExists(webServer,'CWE89',httpd,remoteExploit, 

privEscalation) 
LEAF 

28 THROUGH 7 (multi-hop access) AND 

29 hacl(workStation1,dbServer,tcp,3660) LEAF 

30 execCode(workStation1,user) OR 

31 THROUGH 3 (remote exploit of a server program) AND 

32 netAccess(workStation1,tcp,4040) OR 

33 THROUGH 8 (direct network access) AND 

34 hacl(internet,workStation1,tcp,4040) LEAF 

35 networkServiceInfo(workStation1,httpd,tcp,4040,user) LEAF 

36 vulExists(workStation1,'CVE-2009-1918',httpd,remoteExploit,privEscalation) LEAF 
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37 networkServiceInfo(dbServer,httpd,tcp,3660,user) LEAF 

38 vulExists(dbServer,'CWE89',httpd,remoteExploit,privEscalation) LEAF 

5.3 Calculate Posterior Probabilities and False Positives 

In this Section, we use Algorithm 1 and Algorithm 2 to calculate P(H|E1,E2..En) and 

P(E1,E2..En |H) for attack paths in Figure 6 (H is H1∩ H2…∩Hn ).  

5.3.1 Using Algorithm 1 to Calculate P(H|E1,E2..En) 

Algorithm 1 requires [P(N1,r), P(N1,f ), P(N1,f | N1,r) ], [P(Ni,r), P(Ni-1,c, Ni,f | Ni,r), P(Ni-1,c , 

Ni,f) (i=1 to n)]. All these probabilities are obtained from expert knowledge. To minimize the 

subjectivity of the impact, we suggest using the average probability computed from many 

forensic experts’ judgments [7].  Because the case study mainly focuses on the computation, for 

simplicity, we let all P(Hi) = P(Hi) = 50%, P(Ei) =k ∈  [0,1]( “k” differs for different evidence 

in real scenarios), and assigned P(Ei|Hi) by using our own judgment (the probability of P(Ei|Hi) is 

listed in Table 5). Thus, the P(Hi|Ei) for every attack step without considering about other attack 

steps is  
𝑃(Hi)𝑃(Ei|Hi)

𝑃(Ei)
= 

0.5.𝑃(Ei|Hi)

𝑘
=

𝑃(Ei|Hi)

2𝑘
=c.P(Ei|Hi) ( let c=1/(2k)). By using Algorithm 1, we 

obtained P(H|E1,E2..En) as shown in the last column of Table 5. 

Table 5: Use Algorithm 1 to Compute P(H|E1…En) for Attack Paths in Figure 6 

Attack Path 
Attack Step 1 Attack Step 2 

H1 P(E1|H1) P(H1|E1) P(H|E1) H2 P(E2|H2) P(H2|E2) P(H|E1,E2) 

Left Node 9 0.9 0.9c 0.9c Node 7 0.8 0.8c 0.72c^2 

Middle Node 33 0.99 0.99c 0.99c Node 31 0.87 0.87c 0.861c^2 

Right Node 24 0.99 0.99c 0.99c Node 22 0.85 0.85c 0.842c^2 

Attack Path 
Attack Step 3 Attack Step 4 

H3 P(E3|H3) P(H3|E3) P(H|E1,E2,E3) H4 P(E4|H4) P(H4|E4) P(H|E1,E2,E3,E4) 

Left Node 4 0.9 0.9c 0.648c^3 Node 2 0.75 0.75c 0.486c^4 

Middle Node 28 0.87 0.87c 0.75c^3 Node 17 0.75 0.75c 0.563c^4 

Right Node 19 0.97 0.97c 0.817c^3 Node 17 0.95 0.95c 0.776c^4 
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Notice Node 17 has two joint posterior probabilities, which are from middle path and 

right path respectively.  We can notice that the attack path from the former has a smaller 

probability than the latter. That is because the attacker destroyed the evidence obtained from the 

middle path that involves using a compromised workstation to get access to the databases. 

Correspondingly, the P(Ei|Hi) is smaller. Therefore, the corresponding hypothesized attack path 

has a much smaller probability P(H|E1,E2..En). In reality, it is unlikely that the same attacker 

would try a different attack path to attack the same target if he already succeeded. A possible 

scenario would be that the first attack path was not expected, so the attacker tried the second 

attack path to launch the attack. The joint posterior probability P(H|E1,E2...En) could help 

investigator to select the most pertinent attack path.  

5.3.2 Using Algorithm 2 to Calculate P(E1,E2..En |H ) 

Algorithm 2 requires P(N1,f|N1,r) as P(E1|H1), P(Ni-1,c,Ni,f |Ni,r) as P(Ei|Hi)(i=2 to n) to 

recursively compute P(E1,E2..En |H). As an example, we assigned P(Ei| Hi) for different attack 

step in the three attack paths in Table 6 and calculated P(E1,E2..En |H). The results show that 

the right attack path has the smallest cumulative false positive estimate.  

Table 6: Use Algorithm 2 to Calculate P(E1,E2..En |H ) 

Attack Path 
Attack Step 1 Attack Step2 

H1 P(E1|¬H1) P(E1|¬H1) H2 P(E2|¬H2) P(E1,E2|¬H) 

Left Node 9 0.002 0.002 Node 7 0.001 0.003 

Middle Node 33 0.002 0.002 Node 31 0.003 0.005 

Right Node 24 0.002 0.002 Node 22 0.001 0.003 

Attack path 
Attack Step3 Attack Step4 

H3 P(E3|¬H3) P(E1,E2,E3|¬H) H P(E4|¬H4) P(E1,E2,E3,E4|¬H) 

Left Node 4 0.004 0.007 Node 2 0.03 0.0368 

Middle Node 28 0.003 0.008 Node 17 0.04 0.0477 

Right Node 19 0.002 0.005 Node 17 0.007 0.012 
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Values computed for P(H|E1,E2..En) and P(E1,E2..En |H) show our belief on the three 

constructed attack paths given the collected evidence. The right attack path 

(11→24→23→22→21→19→18→17→16) is the most convincing one, because it has the 

largest P(H|E) and smallest P(E|¬H). The left path is not convincing, because its joint posterior 

probability is less than 0.5c^4.  The middle path is not so convincing because it has a bigger 

cumulative false positive rate, suggesting that the attack path should be re-evaluated to determine 

if reflects a real attack scenario. 

6. CONCLUSION 

In this paper, we have described a method that uses rules to construct a LEG and maps it 

to a BN so that the joint posterior probability or false positive rate for the constructed attack 

paths could be computed automatically. By using a case study, we showed how our method 

could guide forensic investigators to choose the most likely attack scenarios that fit the available 

evidence. Our case study showed our method and the accompany tool could help network 

forensic experts save time and effort in forensic investigation and analysis. However, our system 

does not provide a way to resolve zero-day attack problems. Our ongoing work extends our 

current model to address zero-day vulnerabilities.   

DISCLAIMER  

This paper is not subject to copyright in the United States. Commercial products are identified in 

order to adequately specify certain procedures. In no case does such identification imply 

recommendation or endorsement by the National Institute of Standards and Technology, nor 

does it imply that the identified products are necessarily the best available for the purpose. 

 

REFERENCES: 



 
 

 21 

   

[1] B. A. Olshausen, "Bayesian probability theory." The Redwood Center for Theoretical 

Neuroscience, Helen Wills Neuroscience Institute at the University of California at Berkeley, 

Berkeley, CA (2004). 

[2] MITRE Common Vulnerabilities and Exposures. Retrieved from https://cve.mitre.org/. 

[3] J. Pearl, "Fusion, propagation, and structuring in belief networks". Artificial intelligence 29.3 

(1986): 241-288. 

[4] C. Liu, A. Singhal, D. Wijesekara, “A Logic Based Network Forensics Model for Evidence 

Analysis”. IFIP International Conference on Digital Forensics, Orlando, Florida, January 24-26 

2015. 

[5] A. Darwiche, “Modeling and Reasoning with Bayesian Networks”. Cambridge University 

Press, April 06, 2009. 

[6] F. Taroni, A. Biedermann, P. Garbolino, C.G. Aitken, “A general approach to Bayesian 

networks for the interpretation of evidence”. Forensic Sci. Int., 139 (2004), pp. 5–16. 

[7] M Kwan, K P Chow, F Law and P Lai, “Reasoning About Evidence using Bayesian 

Network”. Advances in Digital Forensics IV, International Federation for Information Processing 

(IFIP) January 2008, Tokyo, pp.141-155.  

[8] B. Carrier, “A Hypothesis-Based Approach to Digital Forensic Investigations (Ph.D. 

Thesis)”, 2006,West Lafayette: Purdue University.  

[9] Y. Liu, H. Man, “Network vulnerability assessment using Bayesian Networks”. In 

Proceedings of SPIE - Data Mining, Intrusion Detection, Information Assurance and Data 

Networks Security (SPIE’05), pages 61–71, 2005. 

[10] C. Vlek, H. Prakken, S. Renooij and B. Verheij(2013), “Modeling crime scenarios in a 

Bayesian Network”. The 14th International Conference on Artificial Intelligence and Law 

(ICAIL 2013), Proceedings of the Conference, 150–159, ACM Press, New York. 

[11] Fenton, N., Neil, M., & Lagnado, D.A. (2012), “A general structure for legal arguments 

about evidence using Bayesian networks”. Cognitive Science, 37, 61–102. 

[12] F. Taroni, S. Bozza, A. Biedermann, G. Garbolino, C.G.G. Aitken, “Data Analysis in 

Forensic Science: A Bayesian Decision Perspective”. John Wiley & Sons, Chichester (2010). 

[13] X Ou, W. F. Boyer, M. A. McQueen, “A scalable approach to attack graph generation”. In: 

13th ACM Conference on Computer and Communications Security (CCS), pp. 336–345 (2006). 

[14] MulVAL: A logic-based enterprise network security analyzer. Retrieved from 

http://www.arguslab.org/mulval.html. 

http://csrc.nist.gov/staff/Singhal/logic_based_network_forensices_model-for_evidence_analysis.pdf
http://csrc.nist.gov/staff/Singhal/logic_based_network_forensices_model-for_evidence_analysis.pdf

